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Abstract:
Sound measurement of intelligence cannot be reduced to

just measurement of performance. It is necessary to measure
the real capabilities of the behavior generation engine of ma-
chines to be able to determine with precision their suitability
for any particular task. We will see that it is necessary to focus
on the architecture of the systems. The paper will present a
summarial description of inner machinery of intelligence and
how this architecture can serve as the basement for higher
mental functionality. This will lead us to the formulation of a
theory of conscious behavior and a the proposal of a research
program focused into the nature and mechanisms of machine
consciousness.
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1 Introduction: Measuring What ?

As Lord Kelvin said, ”to measure is to knoẃ́and hence the
importance of measuring intelligence to know better about it.
Obviously, we know that the problem is not easy just from the
very beginning: Is ”Measuring of Intelligence´´possible ?

In our search for machine replacements of humans in bor-
ing, dangerous or economically unviable activities, we use
to check performance of machines [MindM ] against perfor-
mance of humans [MindH ] or cognitive models of humans
[MindC ]. However, do we sufficiently understand ourselves
[MindH ]? or do we sufficiently understand the systems we
design, manufacture, and use [MindM ]?

Generally speaking, we can consider two ways of measuring
intelligence: with regard to a particular task or independently
of any particular task (Pease [1] refers to this last form asa
priori intelligence).

Intelligence manifests itself in the autonomous successful
performance of tasks. Or, to be more precise, in the au-

tonomous successful performance of ataskby a specificagent
in a concretecontext[2].

Autonomy[AGENT,TASK,CONTEXT]

Extending the base idea of measuringa priori intelligence
we need to measure this faculty independently of the concrete
task, the concrete context and the concrete agent; otherwise
what we will have is a concrete, particular measure, not very
helpful to compare systems with a wide application domain
(this being the case of conventional IQ tests, that just measure
the capability of performing these tests and where extrapola-
tion of results to other activities is highly risky).

To be able to obtain a measure of pure (a priori) intelligence
we need to eliminate from the equation such factors as con-
crete bodies, concrete tasks and concrete contexts. This will
leave the pure essence of intelligence. This vision of intelli-
gence matches our intuitive, abstract notion of intelligence as
a central faculty independent of particular factors that surround
the activity. How can this possibly be achieved ?

In this paper we will try to identify the core essence of in-
telligence to be able todirectlymeasure its capabilities instead
of measuring the result of these capabilities in a concrete task.
The conclusion of this identification will lead us to a research
program that re-gains that old dream of artificial intelligence:
building conscious machines.

2 Architecture and Performance

Presuming a functional equivalence of basic building ma-
terials, all our theories of mind [MindH ], [MindM ] and
[MindC ] lead us to the concussion that only mental architec-
ture can account for intelligent systems performance.

The perceived intelligence is strongly correlated with suc-
cess. Intelligent systems architecture is a critical factor for
success in the performance of any task [3]. Architecture is
hence the point to focus our search for an a priori measure of
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intelligence [4]. Bad architectures lead to non performing sys-
tems.

Ignoring sterile differences between reactive and delibera-
tive intelligence, all these theories do constitute interpretations
that depend critically on representation of goals, states, con-
texts and bodies [5].

That representation is a central factor of intelligent perfor-
mance has been know for decades. Execution engines do ex-
ploit representations to derive agent’s actions. These execu-
tion engines receive varying names depending on the concrete
task at hand: planners, behavior generators, predictors, etc. All
them exploit the information about the world stored in a model
(a world model) to derive actions. Minds are control systems
based on models.

This leads to a typical architectural pattern for
representation-based control system: the elementary loop of
functioning perceive-represent-plan-actthat is used as an
elementary building block for more complex architectures
(see Figure 1).
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Filter ExecutorWorld
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Filter ExecutorWorld
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Figure 1: A basic, two layered, model-based control architec-
ture. Each layer constitutes an elementary loop of functioning.

The effectivity of a concrete pair of components
[model,engine] depends on the particular factors for au-
tonomy mentioned before:task, context and agent. This
means that a concrete pair, for example[ordinary differential
equations, Runge-Kutta simulator]can be better than other
pair [first order logic predicates, resolution engine]for a
concrete task, for exampletank temperature prediction, in
a particular context, for example awell-engineered refinery,
for a specific agent, for example amodel-based predictive
controller.

In many cases, this specificity lead us to sacrifice general-
ity when dealing with constraints to attain specific execution
properties (speed, robustness, cost). For example, mutireso-
lutional representation and control hierarchies offer cost ef-
fective solutions with bounded resources; for speed enhance-

ment, compiled representations and engines adapted for them
are employed.

Generality, however, is an extremely desirable property for
a pair[representation, engine]. Generality is the mark of pure
intelligence. Tradeoffs do obviously exist and have been used -
mistakenly- as arguments against the suitability of general rep-
resentations for the construction of intelligent agents [6].

Generality is out of questioning, however, because if we
want to give to our systems control mechanisms with a high
degree ofa priori intelligence we need generality to overcome
the barriers of the three factors: task, context, agent.

The broader the set of solvable tasks the greater the intelli-
gence of the machine. This was that old dream of the Ultimate
Problem Solver. For example: a washing machine is more in-
telligent if it is also able to minimize water consumption.

The greater the context-independence of the controller the
higher the intelligence of the machine. This means that the
controller can reach its objectives in a variety of execution con-
texts,i.e. is robust against variations in its execution environ-
ment, being able to handle uncertainty in a proper way. For
example, a transelevator in an automated warehouse is more
intelligent if it can avoid people eventually obstructing its way.

And last, machines that tolerate alterations in their own bod-
ies and still fulfil their objective are more intelligent. For ex-
ample, a car controller that can maintain car stability with a
broken tire is more intelligent.

3 Systems with Self

Evolutionary pressure has forced a race-of-brains in the bio-
sphere. One of the highest advances is when systems become
able to extend its own capabilities. This means that the sys-
tem can go beyond current engines and representations, cur-
rent contexts and tasks, and even its current body. The high-
est levels of intelligence are those that not only do learning
(enhancing engines) but also modelling (enhancing represen-
tations).

Intelligent natural systems do learn autonomously, or are
provided externally the units of knowledge that are required
for their successful functioning. This last approach is simpler
in the case of artificial systems with limited scope. Anticipa-
tory systems [7] can do all this process autonomously. The re-
sults of knowledge acquisition are models that capture reality
(with the precision and level of resolution needed for the task).
These models can be —easily— organized into automata mod-
els and hence the usefulness of computers to implement intel-
ligent systems.

Truly intelligent systems do have models of their world and
the tasks they perform and are able to enhance them. In fact,
this is what all the business of science is about. Better models
of reality to overcome, with our technologies, all the barriers
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Figure 2: A not so basic, two layered, model-based control
architecture. The metalevel provides introspection over an el-
ementary loop of functioning.

from the past. Based on our better models of the external world
(the context) we can do things (tasks) that go far away of what
our grandfathers were able to do (with a similar body)1.

The last step is easy to see: Truly intelligent systems do
also model themselves. True intelligent systems maintain con-
tinuously updated, continuously enhancing representations of
themselves. True intelligent systems are self-conscious.

Using this internal representations of themselves, intelli-
gent machines can use their reasoning engines to reason about
themselves and act accordingly. This representation and rea-
soning do also include more basic representation and reason-
ing processes (see Figure 2); intelligent systems do have meta-
level representations and reasoning systems that, coupled with
a query engine and a language interface, are used to inter-
change mental states with others: the states of the represen-
tations and reasoning processes (see Figure 3).

This simple analysis capture a commonsense thought: To be
truly effective, intelligent systems need to be aware of them-
selves, i.e. need to be self-conscious. The nature of the self is
this continuous perception and control of the body of the agent
(see Figure 4). This isthe ghost in the machine.

4 Autonomous Performance of Sys-
tems with Self

Automata models used by intelligent systems consist of expla-
nations of the environment, states of the system and the appro-
priate rules of action. The basic process implemented in the
loop of functioning is reproduced in Figure 5.

This model of reality need not be unitary but composed by a
collection of elementary models. The set of all these models is
aggregated together by the representation system of the agent.

1Consider, for example, the increase in life expectancy in the last fifty years
based on better models of human inner workings.
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Figure 3: Another not basic, layered, model-based control ar-
chitecture. The multiresolutional heterarchy goes beyond the
single elementary loop of functioning into a collection of in-
teracting loops.

Figure 4: The nature of the self: the model of the body inside
the model of the world and a loop of model-based control over
it.
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Figure 5: The process of modelling the world to behave inside
it generates a semiotic loop.



Representation as a system of models appears in both natural
and constructed systems.

This representation system also includes intelligent system
goals that are distributed across the heterarchy of models of
reality. In a similar way, we can think that autonomy is dis-
tributed over the architecture with the same level of granular-
ity. Each level has a component of autonomous behavior deter-
mined by one or many goals of this level and the corresponding
performance measures, and as the resolution becomes lower,
both behaviors and goals are generalized. Autonomy is em-
bodied in the hierarchy of goals and performance measures
supported by internal models. In some sense, we can say that
automata models have a rudimentary form of free will.

The intelligent system has a certain degree of autonomy.
However, its activity is oriented toward the goal of the larger
system (lower resolution unity that the intelligent system be-
longs to).

Consider a bee. While everybody would agree about its
autonomy, no one will doubt that it is —the autonomous
activity— oriented toward the goal of the swarm. At least, it
must not contradict it in the long term. We also can talk about
the autonomy of a can-picking robot. But one should agree
that its autonomy is oriented toward the goal implanted into
this robot by the designer —a sort of lower resolution level.

In the case of artificial systems, this dependency between
levels of autonomy is so strict, that we strive only forbounded
autonomyin the design of these systems.

Actually, the mechanisms of autonomy in the overall system
as well as functioning of autonomic subsystems determine the
viability of the system.

At each level of resolution, one can talk only about the de-
gree of autonomy enclosed within the goal-oriented activity.
This degree is determined by the self of this particular level.
The degree of autonomy is required to cope with the high-
resolution eventualities that at the lower resolution level are
parts of the uncertainty taken into account.

The questionWhy do we need systems with ”self´´ ?has
a clear answer now: Having a self (a continuously updated
model of agent’s body) do increase intelligent systems perfor-
mance.

To be more concrete, this increased performance can be
shown by the collection of tasks that depend on this schema
of representation and control:

• Introspection/reportability

– Optimization (reorganizing own inner processes)

– Socialization (collaborating with other agents)

• Fault handling

– Fault detection and isolation (finding problems)

– Diagnosis (identifying causes)

– Fault management (devising walkarounds)

• Autonomous behavior

– Regoaling (changing tasks)

– Reconfiguration (changing body)

– Tooling (changing context)

5 Intelligence, Self, Consciousness

In this process of intelligent systems analysis there are many
objectives. In some sense we are stepping toward [MindH ] by
means of implementations of [MindM ] that provide progres-
sively accurate behavior. To our understanding, the architec-
tural model presented here is a good unified theory of natural
and artificial intelligence systems.

This theory do explain some of the more difficult observed
aspects of human minds, while avoiding entering into the non-
implementable field of metaphysics.

One of the more puzzling aspects for human mind is the
uniqueness of “self”. As we have seen, the model of the
extended-plant (the body+the controller) can be single or mul-
tiple, not necessarily unitary. The question is: Is there any
reason for the uniqueness of the “self”?.

Our hypothesis is that unitary selves provide evolutionary
advantages (better autonomous performance). Having a single
self enables resolution of autonomous control problems with
scarce resources in the presence of higher degrees of uncer-
tainty. The presence of the single self guarantees the coherence
of the set of multiresolutional goals of the intelligent system.

In relation with [MindH ], there are no widely accepted ex-
planations of conscious/unconscious behavior. Some authors
distinguish between unitary and dual explanations (having one
or two mechanisms for the conscious and the unconscious) and
multiple theories are available on both sides (See [8] for a good
survey).

One of the major problems is that while unitary explanations
are more aestetically pleasant, they fail to provide the neces-
sary qualitative distinction between the conscious and the un-
conscious that many authors want to see. The origin of the
problem can be traced to the perceived distance between con-
scious and unconscious that from our point of view does not
exist. Consciousness is not a binary property, it only looks like
that because the interaction with external agents (with others)
is performed only an a concrete high level of the control hier-
archy.

The main obstacles for a unified theory of mind
([MindH ]+[MindM ] are the chauvinism of human species
and the manicheism of most theories, that appears everywhere:
Representation/representationless, deliberative/reactive con-
scious/unconscious, symbolic/subsymbolic, biologic/beer can.



There are no intelligent systems without representation; ev-
ery system that has a sensor has representation. Reactive con-
trol systems are just degenerate cases of deliberative control
systems (where deliberation is reduced to a simple I/O map-
ping).

There is even disagreement about what isconsciousness.
Some authors distinguish three types: Access conscious-
ness, reflective consciousness and phenomenal consciousness.
There are authors that distinguish upon seven types !!!.

The key for the emergence of self-consciousness is integra-
tion of information about the body with information about the
world (see Figure 6)[9].
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Figure 6: The process of integrating information from incom-
ing sensors lead to progressive world-awareness. Systems with
better sensors can be more aware if properly designed.

Consciousness increases as more information (from the out-
side, from the inside, from the mental processes, etc.) is inte-
grated in a dynamical mental model that includes the self.

The -wicked- problem is not achieving consciousness but
achieving human-like consciousness (i.e. being recognized as
humans by other human minds) and this can be done only by
means of human-like reportability and a human-like mental ar-
chitecture. But building humans is nonsense from a practical
perspective and recognizing consciousness in very alien sys-
tems is something that not everybody is prepared to do. As
Thomas Nagel would ask:What is it like to be a Tomahawk
missile ?[10]

6 Conclusions

Semiotic principles of computation provide a sufficient back-
ground for developing computer systems that demonstrate el-
ements of self, consciousness, and free will.

The prerequisite for achieving this milestone in the intel-
ligent computer systems development is focusing on inter-
pretability of representations as the major factor of perfor-
mance. This can be approached by developing multiresolu-
tional (multigranular, multiscale) systems of knowledge repre-

sentation equipped with a sufficient set of procedures to exploit
the representations.

Eventually, the integration of these hierarchical model-
based control loops will lead to ascertain the emergence of
SELF.

We can conclude thatconsciousnessis just an operational
mode of a -not necessarily- complex controller. Being con-
scious is just having a running controller (being ON). Self-
consciousness appears by the very same method when the
sensed plant is the intelligent system proper.

As the multigranular system of semiotic closures emerges,
it arrives at the phenomenon of representing and monitoring
itself: self-consciousness. SELF [consciousness] is the multi-
granular system of semiotic closures constructed in represen-
tation for interpreting intentionalities of a system within its
blended global multiscale coordinates. SELF is also supported
by a multigranular system of goals that can be considered a
provisional reminder of the results earlier produced by its in-
tentionality system.
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